

QUALIDADE

Os produtos PAVICER/BLOCOZÊZERE espelham o know-how de mais de 40 anos de experiência e o forte investimento em mão-de-obra qualificada e tecnologias laboratoriais de controlo de qualidade.

Este investimento permitiu à Pavicer alcançar, há já 6 anos, a certificação pela ISO 9001:2008; a homologação dos pavimentos pelo Laboratório Nacional de Engenharia Civil (LNEC), sob o DH nº 831. Ambas têm marcação CE nos blocos de betão, blocos térmicos, lancis e pavés. Prevê-se estender a marcação CE aos produtos pré-esforçados já no início de 2010, ainda que a obrigatoriedade só o seja em 2011.

A PAVICER e a BLOCOZÊZERE são uma referência em termos de qualidade e segurança no sector da construção.

EMPRESA

A PAVICER e a BLOCOZÊZERE são empresas que se dedicam à produção de pré-fabricados e pré-esforçados para a construção, localizadas no centro do país, com óptimas acessibilidades.

A tecnologia avançada, a forte aposta em investigação e desenvolvimentos de novos e melhores produtos, o licenciamento da unidade fabril junto da Leca Portugal e a grande capacidade para a produção de vigas fizeram da PAVICER e da BLOCOZÊZERE empresas líderes de Portugal, na sua área. Com uma estratégia de gestão bem delineada e elevados níveis de produtividade per capita no sector, desde 1996 que a PAVICER tem sido reconhecida pelo IAPMEI, com o prémio PME Excelência e PME Líder.

Com a presença no mercado nacional fortemente consolidada, a PAVICER e a BLOCOZÊZERE decidiu ir mais longe e expandir o seu negócio para o mercado ibérico, alargando a sua dimensão e reforçando a sua estratégia de crescimento. Os principais objectivos da empresa mantêm-se: servir mais e melhor todos os clientes e manter o nível de confiança junto dos fornecedores.

PAVIMENTOS ALIGEIRADOS E PRÉ-ESFORÇADOS

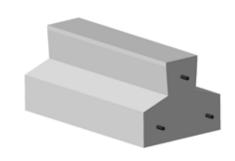
VIGOTAS

VIGA I

LAJE ALVEOLAR

PRÉLAJE

BLOCOS DE COFRAGEM



VIGOTAS

De betão pré-esforçado, com armadura constituída por fios de aço aderentes homologados pelo LNEC segundo a especificação LNEC E 452-2004, com tensões aplicadas para o pré-esforço de 1100 Mpa. Com betão de classe C35/45, características que associadas ao nosso processo de fabrico conferem às vigotas um excelente comportamento resistente, fundamental para uma laje aligeirada, pois são estas que lhe dão o suporte resistente. Os seus comprimentos são variados, mediante as necessidades de projecto.

APLICAÇÕES

É uma componente estrutural linear de secção reduzida, destinada a associar-se às abobadilhas e ao betão complementar em obra, constituindo a parte resistente do pavimento.

Urb. em Coimbra | Pavimento pré-esforçado

					A	rmaduras				
VIGOTA	Geometria e posicionamento da armadura	Massa		Diâmetro		Pré	-esforço (MPa)	(1)		^f ckj (MPa)
	da armadura	(kg/m)	Nivel	(mm)	na origem	28 dias	2 meses	1 ano	tempo infinito	(2)
ТЕСТО										
	3 @ 4		Superior	1 Ø 4	900	760	740	690	670	
PO2	20 35 35 20	17,1	Inferior	2 Ø 4	1100	940	910	860	830	20
	2 0 4		Superior	1 Ø 4	1100	920	890	830	800	
P03	20 35 35 20	17,3	Inferior 1 Ø 4 1100 840	810	730	700	22			
	20 35 35 20 E		Superior	1 Ø 4	1000	870	850	800	780	
P2		20,4		Inferior	2 Ø 4	1100	950	930	880	850

			Armaduras Pré-esforço (MPa) (1)							fcki		
VIGOTA	Geometria e posicionamento da armadura	Massa (kg/m)	Nivel	Diâmetro (mm)	na origem	Pre 28 dias	-esforço (MPa) 2 meses	(1) 1 ano	tempo infinito	fckj (MPa) (2)		
PISO												
P3	4 6 4	20,5	Superior	1 Ø 4	1100	960	930	880	850	- 20		
73	20 35 35 20	20,3	Inferior	3 Ø 4	1100	910	880	820	780	20		
	2 0 4		Superior	1 Ø 4	1100	960	940	890	860			
РЗА	20 35 35 20	20,5 -	Inferior	1 Ø 4 2 Ø 5	1100	860	820	750	720	- 20		
	3 9 5		Superior	1 Ø 4	1100	970	940	900	870			
P3R	20 35 35 20	20,6 -	Inferior	3 Ø 5	1100	840	800	720	690	- 23		
	3 6 4		Superior	1 Ø 4	1100	940	920	870	840			
P4	2 0 5 8	20,6	Médio	1 Ø 4	1100	860	820	750	720	23		
	20 35 35 20	-	Inferior	1 Ø 4 2 Ø 5	1100	830	790	710	680	-		
	2 \$ 4		Superior	1 Ø 4	1100	950	920	870	840			
P4A	3 Ø 5 💆	20,6	20,6	20,6	Médio	1 Ø 4	1100	840	800	730	700	26
	20 35 35 20	-	Inferior	3 Ø 5	1100	810	770	690	650	-		
	1 \$ 4		Superior	1 Ø 4	1100	940	910	860	820			
P4R	4 0 5 8	20,7	Médio	1 Ø 5	1100	830	790	710	680	27		
	120 + 35 + 35 + 20 +		Inferior	3 Ø 5	1100	790	750	660	630	-		
	45		Superior	1 Ø 5	1100	900	860	800	770			
	SE S	8 5 6 6 5 8	8 6 5 8	-	Médio	1 Ø 5	1100	820	780	700	670	-
P5		20,6	Médio	1 Ø 5	1100	800	760	670	640	- 28		
	20 35 35 20	-	Inferior	3 Ø 5	1100	780	730	650	610	-		

⁽¹⁾ Valores médios do pré-esforço nas armaduras das vigotas ao fim dos intervalos de tempo indicados. Estes intervalos são definidos a partir da data de moldagem e correspondem ao pré-esforço na origem indicado.
(2) fckj - valor característico da tensão da rotura à compressão do betão das vigotas quando da trasmissão do pré-esforço às vigotas, a verificar em ensaios sobre provetes cúbicos de 15cm de aresta.

VIGA I

Perfil préfabricado em betão pré-esforçado, constituido por betão C35/45 e armaduras de fios de aço de alta resistência, utilizados como vara de apoio em coberturas.

TIPO	Geometria e posicionamento		Características		Estados Limites			
DE VIGAS	de armaduras	Altura (mm)	Largura (mm)	Peso Próprio (kN/m)	Mrd (kNm)	Vrd (kN)	EI (kNm²)	
I 16	2	160	110	0,27	9,20	6,20	1010	
I 18	8 a 05 9 q 0 0 R q	180	110	0,304	12,2	7,0	1460	
I 20	Ø5	200	110	0,339	15,5	7,90	2000	

LAJE ALVEOLAR

A laje alveolar é um elemento estrutural autoportante que permite um aligeiramento de toda a estrutura edificada. São fabricados com betão de alta resistência, aço pré-esforçado e uma secção que garante uma óptima resistência a esforços transversais.

APLICAÇÕES

As lajes alveolares também permitem a execução de pavimentos que suportem diferentes sobrecargas de utilização, tais como, edifícios habitacionais, comerciais e/ou de serviços, escolares, desportivos, industriais, salas de espectáculos, igrejas, garagens, auto-silos e pontões.

- Garantia de qualidade na execução da construção.
- Capacidade de vencer vãos de grandes dimensões.
- Facilidade de montagem e em tempo muito reduzido.
- Autoportantes, redução de cofragens em grande escala, redução significativa de escoramentos temporários
- Excelente acabamento da face inferior com possibilidade de pintura directa.
- Redução do peso próprio da estrutura de suporte.
- Redução de armaduras complementares em obra.
- Flechas baixas apesar da esbelteza.
- Facilidade de integração na construção tradicional e em reabilitação de edifícios.
- Isolamento térmico eficaz.
- Pavimentos com altura de dimensões correntes.

	Altura				Estados Limites		Quantidades m²		
TIPO DE LAJE	Lâmina		P.P.	Últim	os	Utilização	Qua	ntidades m²	
ALVEOLAR	de compressão (cm)	Total (cm)	(kN/m²)	Mrd (kNm/m²)	2,3 a 98,7 54,7 16,5 a 48,1 ,1 a 140,2 74,7 25,6 a 74,6	EI (kNm2/m²)	Pranchas	Betão	
	0	16	2,68 a 2,80	32,3 a 98,7	54,7	16,5 a 48,1	10547 a 10769	0,83	6,1
P160	5	21	3,87 a 4,00	48,1 a 140,2	74,7	25,6 a 74,6	22338 a 22920		56,1
	8	24	4,59 a 4,72	59,0 a 169,0	86,7	32,1 a 93,6	32380 a 33250		86,1
	0	20	3,08 a 3,20	41,0 a 145,4	70,7	25,7 a 70,1	19393 a 19845	0,83	8,4
P200	5	25	4,27 a 4,40	57,0 a 187,2	90,7	36,7 a 100,5	36550 a 37534		58,4
	8	28	4,99 a 5,12	67,9 a 215,9	102,7	44,3 a 121,2	50065 a 51441		88,4
	0	25	3,58 a 3,71	51,9 a 202,6	90,7	37,4 a 98,6	35388 a 36251	0,83	11,4
P250	5	30	4,77 a 4,90	67,9 a 243,8	110,7	50,4 a 133,2	22338 a 22920		61,4
	8	33	5,49 a 5,62	78,9 a 272,4	122,7	58,9 a 155,6	79552 a 81705		91,4

Pavilhão na Figueira da Foz | Laje Alveolar

Bloco de apartamentos em Viseu | Prélaje

PRÉLAJE

A Pré-Laje é uma estrutura pré-fabricada com 1,20 m de largura e comprimento variado vencendo o vão em causa. A sua leveza e caracteristicas autoportantes permitem uma significativa redução do prazo de execução de construção. É constituída por betão de alta resistência, armaduras pré-esfoçadas, e enchimento em poliestireno conferindo excelentes propriedades térmicas e acústicas.

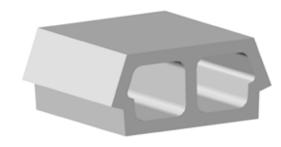
APLICAÇÕES

Estas pré-lajes destinam-se á execução de pavimentos que suportem diferentes sobrecargas de utilização, tais como, coberturas em geral, habitação, escritórios, salas de espectáculos, restaurantes, igrejas, garagens, ginásios, estádios, recintos desportivos, auto-silos, indústria, arquivos e outras utilizações de carácter privado e colectivo.

- Garantia de qualidade na execução da construção.
- Capacidade de vencer v\u00e4os de grandes dimens\u00f6es.
- Facilidade de montagem e em tempo muito reduzido.
- Redução de cofragens em grande escala.
- Redução significativa de escoramentos temporários.
- Autoportantes, redução de cofragens em grande escala, redução significativa de escoramentos temporários.
- Excelente acabamento da face inferior com possibilidade de pintura directa.
- Redução do peso próprio da estrutura de suporte.
- Facilidade de integração na construção tradicional e em reabilitação de edifícios.
- Excelente isolamento térmico.

	Altura			Estados Limites				Pré-laje		Quantidades por m ²			
TIPO DE LAJE AL-	Lâmina		P.P.	Ulti	mos	Utili	zação	FIE	-iaje	- Qu	iantiuaues poi i		
VEOLAR	de compressão (cm)	Total (cm)	Pavimento (kN/m²)	Mrd (kNm/m)	Vrd (kN/m)	Mfctk (kNm/m)	EI (kNm2/m)	kN/m	kg/m	Pré-lajes (m/m²)	Blocos (unid./m²)	Betão (I/m²)	
P 200/40-250	5	25	3,74 a 3,80	31,7 a 105,9	48,5	22,8 a 57,1	34258 a 34741	2,34	238,14	0,83	1,67	70,3	
P 200/65-250	5	25	4,12 a 4,20	49,9 a 134,3	46,4	29,3 a 72,6	36863 a 37261	2,907	296,33	0,83	1,67	68,4	
P 250/40-300	5	30	4,22 a 4,28	37,4 a 131,5	59,0	28,5 a 71,6	55587 a 56356	2,676	272,8	0,83	1,67	76,9	
P 250/65-300	5	30	4,60 a 4,68	60,8 a 172,5	56,9	39,1 a 94,7	60399 a 61083	3,247	331,0	0,83	1,67	75,0	
P 250/65-350	10	35	5,09 a 5,17	74,9 a 210,6	67,5	48,5 a 120,7	90323 a 91329	3,247	331,0	0,83	1,67	92,9	
P 250/65-370	12	37	5,57 a 5,65	80,5 a 237,1	71,7	53,9 a 134,1	111386 a 112678	3,247	331,0	0,83	1,67	112,9	

BLOCOS DE COFRAGEM


ABOBADILHA

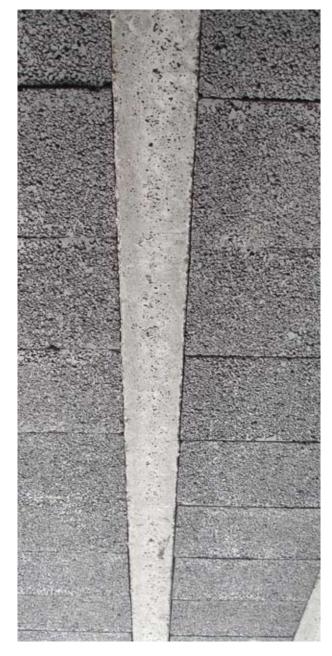
Feitas de betão com agregados de argila expandida, com uma massa volúmica de 1200 kg/m³, que fazem um excelente aligeiramento de uma laje. A variedade de dimensões e leveza das abobadilhas confere à laje não só as mais diversas alturas, assim como uma grande leveza, bom isolamento térmico e acústico à estrutura e grande resistência ao fogo.

Estas abobadilhas têm uma particularidade: algumas peças têm os fundos tapados, o que permite economizar betão complementar no enchimento da laje.

APLICAÇÕES

As abobadilhas servem exclusivamente de cofragem ao betão complementar da laje aligeirada, e em conjunto com vigotas pré-fabricadas de betão pré-esforçado, formam o pavimento aligeirado.

Leca


- Betão leve.
- Abobadilha de beiral.
- Compatibilidade Vigota e Abobadilha (importante no comportamento igrométrico da laje)
- Excelente resistência ao fogo.
- Economia de betão.

- Abobadilha tapada.
- Tectos uniformes.
- Isolamento térmico e acústico.
- Redução de mão-de-obra.

Moradia em Oliveira do Hospital | Pavimento pré-esforçado

Designação	C (mm)	L (mm)	H (mm)	Resistência à compressão (N/mm²)	Reacção ao fogo	Peso (kg/un)	Quan- tidade/ palete
BLC	COS DE	BETÃO	DE AG	REGADOS COR	RENTES	COM LECA	
23x12x25		120				4,5	160
23x16x25	230	160	-			4,8	120
23x20x25	230	200				6,8	100
23x25x25		250	-			9,3	80
38x09x25		90				5,5	120
38x12x25		120		> 1.50	A1	6,0	90
38x16x25	380	160	250	≥ 1,50	AI	6,8	70
38x20x25		200				9,1	60
38x25x25		250				11,7	50
48x12x25	480	120				6,5	80
48x16x25		160	_			8,7	60
48x20x25		200				9,5	50

BLOCOS DE COFRAGEM

FUNGILECA®

FungiLeca® é uma evolução do Fungibloco®, é fabricado com betão ultraleve Leca®, com uma massa volúmica de 650kg/m³, o que permite obter peças muito leves e, por conseguinte, reduzir o peso próprio da laje.

Os blocos FungiLeca® servem de cofragem ao betão complementar da laje aligeirada fungiforme nervurada, e em conjunto com as nervuradas fabricadas em obra, formam este tipo de pavimento aligeirado.

APLICAÇÕES

Ideal para a construção de lajes de edifícios, com um óptimo comportamento estrutural.

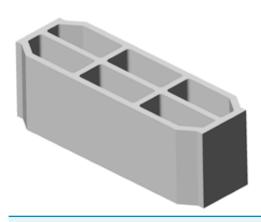
- Bloco com massa volúmica de 650 Kg/m³.
- Bloco mais resistente (+ resistência mecânica + resistência ao choque).
- Menor consumo de armaduras anti-sísmicas nos pilares.
- Maior segurança em obra.
- Excelente comportamento ao fogo.
- Ensaio acústico aos sons de percussão, realizado no LNEC.
- · Laje mais leve.
- Menor densidade de armaduras.
- Menor consumo de betão.
- Laje mais económica.
- Nota técnica da FEUP e do Instituto da Construção.
- Ensaio resistência ao fogo.

L	TIPO DE		Cara	cterística	as Fungi	Leca			os de dimens nódulos de t				Coeficiente térn		— Classe de
nerv. (cm)	FUNGI LECA	Designação da Laje	L (cm)	C (cm)	H (cm)	Peso Un. (kg)	Ht (cm)	Lâmina de com- pressão Lc (cm)	Volume de betão (m³/m²)	Peso Fungi Leca (kN/m²)	Peso da Laje (kN/m²)	Inércia (cm²)	Fluxo ascendente (W/m².ºC)	Fluxo descen- dente (W/m².ºC)	resistência ao fogo
	FL 20	FL 25n 10			20	15	25		0,092	0,581	2,881	29891	2,31	1,86	CF 90
10	FL 25	FL 30n 10	80	26,6	25	21,5	30	5	0,102	0,654	3,216	51130	2,24	1,81	- CF 120
	FL 30	FL 35n 10			30	30	35		0,113	0,727	3,551	80109	2,18	1,77	- CF 120
	FL 20	FL 25n 12			20	15	25		0,099	0,556	3,026	34264	2,30	1,85	CF 90
12	FL 25	FL 30n 12	80	26,6	25	21,5	30	5	0,111	0,626	3,400	58501	2,22	1,79	- CF 120
	FL 30	FL 35n 12			30	30	35		0,123	0,695	3,774	91465	2,15	1,75	CF 120
	FL 20	FL 25n 15			20	15	25		0,108	0,522	3,226	40410	2,20	1,84	CF 90
15	FL 25	FL 30n 15	80	26,6	25	21,5	30	5	0,123	0,587	3,655	68821	2,19	1,78	- CF 120
	FL 30	FL 35n 15			30	30	35		0,137	0,652	4,084	107339	2,12	1,73	CF 120

Obra com aplicação de Fungileca®

BLOCOS DE COFRAGEM

FUNGIBLOCO®


Direccionado para o mercado da construção de edifícios e em particular das lajes nervuradas planas do tipo fungiforme - lajes apoiadas directamente em pilares

Com grande liberdade de adaptação à arquitectura, a solução Fungibloco® permite construir com maiores espaçamentos entre pilares e com qualquer tipo de sobrecargas, mesmo as mais exigentes e em todos os tipos de edifícios – habitacionais, industriais, serviços e equipamento.

O sistema Fungibloco®, permite também construir lajes aligeiradas com nervuras unidireccionais e vigas embebidas. Em lajes de grande vão e grandes sobrecargas, é possível recorrer a nervuras unidireccionais pós-esforçadas, tendo já sido realizadas, com esta solução, lajes estruturais com 14,5m de vão e 0,50m de espessura total.

APLICAÇÕES

Os blocos Fungibloco® são utilizados na execução de lajes fungiformes aligeiradas nervuradas, conferindo um significativo aligeiramento à estrutura.

VANTAGENS

- Menores deformações.
- Tecto plano (sem capitéis aparentes).
- Compatibilidade de materiais (ausência de fissuras).
- Ausência de manchas durante processo de secagem.
- Facilidade de fornecimento.

Designação	C (mm)	L (mm)	H (mm)	Resistência à compressão (N/mm²)		Peso (kg/un)	Quantidade/palete
		BLO	COS DE BETÃ	O DE AGREGADOS CORRENTES			
FL 75x25x20			200			20,7	30
FL 75x25x25	750	250	250	≥ 1,50	A1	21,6	25
FL 75x25x30			300			22,7	20

Moradia em Coimbra | Fungibloco®

Moradias no Viso, em Viseu | Pavimento pré-esforçado

LAJETA

Complemento da abobadilha, é o elemento de cofragem colocado nas zonas de maciçamento de uma laje.

APLICAÇÕES

Ideal para locais que necessitam de amaciamento das lajes, como

zonas que confinam com varandas.

- Leveza
- Bom comportamento ao fogo
- Bom isoalmento térmico e acústico
- Grande economia de mão-de-obra
- Elevada resistência mecânica
- Menor consumo de betão complementar

ALVENARIAS

ACÚSTICAS

TÉRMICAS

INDUSTRIATS

COFRAGEN

BETÃO DE AGREGADOS LEVES LECA

TRADICIONAIS

ALVENARIAS

Sistema construtivo de paredes interiores ou exteriores, entre forias permitem bons desempenhos ao nível do isolamento térmico,

APLICAÇÕES

nharia civil, nomeadamente em paredes nomeadamente em paredes simples, paredes duplas e divisórias.

Bloco Térmico® Bloco isolante para paredes simples **Isolsónico**® Bloco isolante para paredes divisórias Bloco Leve Industrial (BLI®) Bloco para construções industriais

VANTAGENS

- O bloco de betão é um material que, pela sua natureza, apresenta grande versatilidade e eficácia.
 Adapta-se a todos os tipos de construção.
 Possui boa resistência mecânica e inércia térmica.

- Obtenção de uma base que garante óptimos acabamentos
- As mais variadas soluções para execução de alvenarias traduzem-se em

Elevada rentabilidade e maior economia,

Baixo consumo de argamassas, Óptimos isolamentos acústicos e térmicos,

Segurança ao fogo, Conforto acústico e visual,

Maior leveza associada a excelente resistência

ALVENARIAS TÉRMICAS

BLOCO TÉRMICO®

Bloco de betão leve fabricado com agregados leves de argila expandida Leca®, concebido especialmente para realização de paredes simples exteriores ou confrontadas com zonas não aquecidas, em edifícios de habitação, escritórios ou comerciais.

VANTAGENS

- Economia de argamassa e juntas horizontais descontínuas no assentamento.
- Encaixe macho-fêmea, sem argamassa na junta vertical.
- Excelente planimetria, boa aderência dos revestimentos na superfície.
- Estabilidade mecânica.
- Estanquidade à chuva.
- Adaptação à utilização.

Enquadramento no RCCTE

- Resistência ao fogo.
- Durabilidade.
- Facilidade de execução.

Solução construtiva


Alvenarias exteriores de edifício

BLOCO TÉRMICO® Local

ITE (Isolamento Térmico pelo Exterior)

VANTAGENS

- Redução das pontes térmicas.
- Economia energética.
- Diminuição de riscos de condensações.
- · Conforto interior.
- Diminuição da espessura das paredes.
- · Diminuição do gradiente de temperaturas.
- Possibilidades estéticas variadas.

Coeficiente de transmissão térmica (U)

BLOCO TÉRMICO® + ETICS

	Espessura	U A	lvenaria (W/m2	°C)
ETICS	Isolamento	BT20	BT25	ВТ30
(Weber	30mm	0,56	0,54	0,52
Therm)	40mm	0,49	0,47	0,46
	50mm	0,43	0,42	0,41

- · Simplesmente confortável.
- Cumpre o novo RCCTE.
- Aumenta a eficiência energética.
- · Aumenta o conforto da habitação.

Condições para automática do VALORES DE R	regu	lame	nto	APPLE N	1	4	, ()	-42%
VALURES DE R	KEFEF	CENC	IA	4176-		-		-4/9
W/m2°C	- 11	I2	13					
Zonas Opacas Verticais	0,7	0,6	0,5		67	263		
PONTES TÉ			CTE	*/**				-4/4
Ucorrente	_			377				["
Certificado e OBRIGA	energ TÓR :	ético [O)	370-			-	-113
				n-			Zenas Clim	aficas 0 3 2

Designação	C (mm)	L (mm)	H (mm)	Massa (Kg)	Categoria de tolerância (mm)	Resistência à compressão - Categoria II (N/mm²)	Coeficientes transmissão térmica (W/m².ºC)	Resistência sonora Ea (db)	Coeficiente Absorção Sonora	Resistência ao fogo	Peso (kg/un)	Quantidade/ palete
BT 20	500	200	190	13,7	(D1) -5 / +3	> 2,5	1,30	46	0,46	CF240	11,6	50
BT 25	500	250	190	15,3	(D1) -5 / +3	> 2,5	1,20	48	0,46	CF240	14,5	40
BT 30	500	300	190	15,4	(D1) -5 / +3	> 2,5	1,10	49	0,46	CF240	16	30

ALVENARIAS ACÚSTICAS

ISOLSÓNICO®

Concebido para a construção de paredes interiores, entre fogos, ou de paredes simples exteriores, o Isolsónico® garante um bom isolamento acústico.

APLICAÇÕES

Paredes de meação.

Envolvente exterior de edifícios de habitação.

Caixas de elevador/caixas de escada.

VANTAGENS

Parede única.

• Rapidez de aplicação. • Garantia de isolamento.

ISOLSÓNICO®25 ISOLAMENTO ACÚSTICO 53 dB

 $Dn_1 w=53dB$ Ensaio no LNEC

Designação	C (mm)	L (mm)	H (mm)	Categoria de tolerância (mm)	Resistência à compressão - Categoria II (N/mm²)	Coeficientes transmissão térmica (W/m².ºC)	Massa volúmica (Kg/m³)	Isolamento sonoro a sons aéreos (Db)	Reacção ao fogo	Peso (kg/un)	Quantidade/ palete
ISOLSÓNICO 20	400	200	190	(D1)	> 2 5	1,1	1150	49	- A1	15,8	60
ISOLSÓNICO 25	250	190	-5 / +3	≥ 2,5	1,1	1130	53	- AI	18,2	48	

ALVENARIAS DE COFRAGEM

BLOCO LINTEL

Bloco em forma de U, que facilita a cofragem perdida na execução de lintéis e vigas de travamento.

Designação	C (mm)	L (mm)	H (mm)	Categoria de tolerância (mm)	Resistência à compressão - Categoria II (N/mm²)	Coeficientes transmissão térmica (W/m².ºC)	Isolamento sonoro a sons aéreos (Db)	Reacção ao fogo	Peso (kg/un)	Quantidade/ palete
BLOCO LINTEL 15	500	150	100	190 (D1) -5 / +3	>2.0			A 1	18	70
BLOCO LINTEL 20	500	200	190		≥2,0			A1	21	50

Obra com Bloco Térmico® e Isolsónico®

Obra com Isolsónico®

ALVENARIAS INDUSTRIAIS

BLI®

Bloco leve com encaixes verticais que permitem óptimos acabamentos com juntas secas. Solução direccionada para a envolvente exterior de edifícios industriais e agrícolas, anexos, muros e divisórias.

VANTAGENS

- Bloco simples de aplicar.
- Mais rapidez na colocação em obra.
 Mais conforto térmico e acústico.
- Maior qualidade do trabalho em obra e benefícios para o consumidor final.
- Despreocupação com excesso de peso nos camiões.

- Bloco 40% mais leve.
- Menos consumo de argamassa no assentamento.
- Mais económico.
- Transportes sempre rentabilizados.
- Não arrisca a coimas elevadíssimas por excesso de peso.

Designação	C (mm)	L (mm)	H (mm)	Categoria de tolerância (mm)	Resistência à compressão - Categoria II (N/mm²)	Coeficientes transmissão térmica (W/m².ºC)	Isolamento sonoro a sons aéreos (Db)	Reacção ao fogo	Peso (kg/un)	Quantidade/ palete
BLI 15	500	150	190	(D1) -5 / +3	≥ 2,0	1,80	46	A1	9,8	70
BLI 20	500	200	190	(D1) -5 / +3	≥ 2,0	1,80	46	A1	11,2	50

ALVENARIAS DE BETÃO DE AGREGADOS LEVES LECA

BLOCO LECA

Bloco leve de Leca, ideal para todo o tipo de construção, com massa volúmica reduzida e bons índices de resistência.

	Designação	C (mm)	L (mm)	H (mm)	Categoria de tolerância (mm)	Resistência à compressão - Categoria II (N/mm²)	Coeficientes transmissão térmica (W/m².ºC)	Isolamento sonoro a sons aéreos (Db)	Reacção ao fogo	Peso (kg/un)	Quantidade/ palete
В	L 50X20X20		200							11	70
В	L 50X20X25	500	250	200	(D1) -5 / +3	≥ 1,0		DND	A1	13,5	40
В	L 50X28X20		280					_		14	56

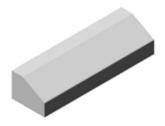
ALVENARIAS TRADICIONAIS

BLOCO BETÃO

Bloco com acabamento rugoso, indicado para todo o tipo de construção. Bastante usado na construção civil devido à sua baixa massa volúmica, que permite fácil manuseamento e rapidez na execução de alvenarias.

Designação	C (mm)	L (mm)	H (mm)	Categoria de tolerância (mm)	Resistência à compressão - Categoria II (N/mm²)	Isolamento sonoro a sons aéreos (Db)	Reacção ao fogo	Peso (kg/un)	Quantidade/ palete
50X20X10		100						10	140
50X20X15		150						15	98
50X20X20		200						18	70
50X20X25	500	250						23,5	56
50X27X20		270	200	(D1) -5 / +3	≥ 2,0	DND	A1	27	48
50X28X20		280						27,5	56
50X30X20		300						29,5	56
40X20X20	400	200						12	60
Curvo	400	150						24	70

PAVIMENTAÇÃO ARRUAMENTOS ARRANJOS EXTERIORES


LANCIL

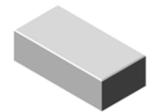
PAVÊ

LANCIL

Servem para delimitar e guiar diferentes zonas mediante os seus usos. O seu excelente acabamento permite as mais variadas aplicações nos mais diversos ambientes: rurais e urbanos.

VANTAGENS

- Separação física ou visual de diferentes pavimentos ou superfícies.
- Boa durabilidade e resistência ao escorregamento e deslizamento.
- Delimitação de canais e de áreas de circulação de veículos.
- Encaminhamento de águas para canais de drenagem.


TIPO DE LANCIL	Geometria	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	Compri- mento (mm)	Camada de desgaste	Peso (kg/un)	Quant. / palete	Resistência à flexão	Absorção de água	Resistência á abrasão	Resistência ao escor- regamento / deslizamento
Guia		80	80	200 / 250			4000		33,0 / 41,0	40 / 36	Classe 1	Classe 1	Classe 1	Satisfaz
Passeio 100		120	80	250	130	120	1000		50	18	Classe 1	Classe 1	Classe 1	Satisfaz
Passeio 50		120	80	250	130	120	500		30,0	48	Classe 1	Classe 1	Classe 1	Satisfaz
Estrada		150	120	250	130	120		- ≥ 4 mm	75,0	16	Classe 1	Classe 1	Classe 1	Satisfaz
Rampa 100		300	100	220	240	100	1000		126,0	6	Classe 1	Classe 1	Classe 1	Satisfaz
Rampa 50	(300	100	220	240	100	500	-	63,0	8	Classe 1	Classe 1	Classe 1	Satisfaz

PAVÊ

Constituídos por pequenos blocos resistentes de betão justapostos, obtendo um pavimento elástico apesar da enorme rigidez de cada bloco. As variedades de formas e cores permitem as mais variadas aplicações com os mais variados padrões. Ideal para todo o tipo de ambiente, do mais tradicional ou rústico ao mais requintado e elaborado.

APLICAÇÕES

- Vias pedonais
- Circulação de veículos
- Revestimento de telhados

TIPO DE PAVÊ	Geometria	L (mm)	E (mm)	C (mm)	Camada de desgaste	Peso/m²	Quantidade / palete	Resistência à tracção por corte	Resistência à abrasão	Resistência ao escorregamento / deslizamento
I		163	60	198			8,6	Classe 1	Classe 1	Satisfaz
Hexagonal		201	60	177		405.0	8,0	Classe 1	Classe 1	Satisfaz
Holanda		100	60	200	- ≥4 mm	135,0	10,0	Classe 1	Classe 1	Satisfaz
Мара		107	60	221	_		8,2	Classe 1	Classe 1	Satisfaz

SANEAMENTO

MANILHAS

MEIAS MANILHAS

CONES

ANÉIS

CAIXAS DE VISITA

MANILHAS DE BETÃO NÃO ARMADO

Tubos de betão não armados fabricados exclusivamente para drenagem de águas residuiais, pluviais e superficiais por gravidade ou esporadicamente a baixa pressão em condutas enterradas.

Designação	Diâmetro nominal (mm)	Espessura (mm)	Comprimento Interior (mm)	Diâmetro nominal do encaixe fêmea (mm)	Diâmetro nominal do encaixe macho (mm)	Resistência à flexão Iongitudinal	Durabilidade
Manilhas 200	200	40		270	260		
Manilhas 300	300	40	-	370	360		
Manilhas 400	400	40	-	485	480		
Manilhas 500	500	60	1000	625	620		
Manilhas 600	600	60	_	705	700	Dimensionalmente	Classe
Manilhas 800	800	100	-	905	900	adequada	de betão C30/37
Manilhas 1000	1000	100	_	115	110		
Meias manilhas 200	200	40		270	260		
Meias manilhas 300	300	40	1000	370	360		
Meias manilhas 400	400	40	_	485	480		

CONESDE BETÃO NÃO ARMADO

Câmaras de visita para acesso à rede colectora de águas residuais e pluviais por gravidade, implantadas em zonas pedonais e/ou rodoviárias.

Designação	Diâmetro nominal máx. (mm)	Diâmetro nominal min. (mm)	Altura (mm)	Espessura (mm)	Resistência sobre carga vertical	Durabilidade
Cone concêntrico 50	1000	500	500	100	Dimensionalmente adequada	Resitência do betão > 40 MPa
Cone concêntrico 60	1000	600	500	100	Dimensionalmente adequada	Resitência do betão > 40 MPa
Tampas de cones						

ANÉIS DE BETÃO NÃO ARMADO

Câmaras de visita para acesso á rede colectora de águas residuais e pluviais por gravidade, implantadas em zonas pedonais e/ou rodoviarias.

Designação	Diâmetro nominal (mm)	Altura (mm)	Espessura (mm)	Resistência mecânica	Durabilidade	
Anéis 1000x250	1000	250	0.5	Classes 20	Resitência do betão	
Anéis 1000x500	1000	500	85	Classe 30	> 40 MPa	
Tampas de anéis						

CAIXAS DE VISITA

 $C\hat{a}$ maras de visita para acesso à rede predial de águas residuais e pluviais por gravidade, implantadas em zonas pedonais.

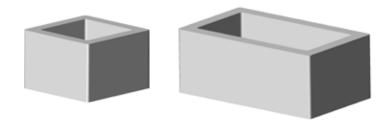
Designação	Diâmetro (mm)	Comprimento (mm)	Largura (mm)	Altura (mm)	Espessura (mm)	Resistência mecânica	Durabilidade	
Caixa de visita Ø 400	400			- 400	40	Classe 30	Resitência do betão	
Caixa de visita 400x400		400	400	400	40	Classe 30	> 40 MPa	
Tampas de caixa de visita								

VENTILAÇÃO EXAUSTÃO DE FUMOS

CONDUTAS/FUGAS

VEDAÇÃO

POSTES


VENTILAÇÃO/EXAUSTÃO DE FUMOS

CONDUTAS/FUGAS

Ideal para escoamento de gases e fumos, com boa resistência ao fogo.

APLICAÇÕES

Estas peças pré-fabricadas em betão destinam-se à execução de condutas de exaustão e ventilação de fumos e gases. Com excelente resistência ao fogo, garante uma boa alternativa ao tradicional processo de construção de chaminés e condutas.

Designação	Modelo	C (mm)	L (mm)	H (mm)	Reacção ao fogo	Peso (kg/un)	Quantidade/palete
30x30x20		300	200	200	41	7,5	63
50x30x20		500	300	200	A1 -	11,0	42

VEDAÇÃO

POSTES

Fabricados de acordo com as normas em vigor, os postes pré-fabricados de betão estão disponíveis em diversas dimensões.

APLICAÇÕES

Os postes pré-fabricados em betão destinam-se à execução de vedações de limites de propriedade ou utilizações similares. Apresentam uma excelente durabilidade e óptimo aspecto visual, enquadrando-se em perfeita harmonia com o meio envolvente.

Designação	C (mm)	L (mm)	H (mm)
Postes 1,50 m	1500		
Postes 2,00 m	2000		
Postes 2,50 m	2500	100	100
Postes 3,00 m	3000	_	
Postes 2,50 m com braço 0,80 m	1100	-	

Tel. +351 275 774 139 / 774 322 | Fax +351 275 774 373 geral.blocozezere@pavicer.pt Estrada de Pêroviseu | Alcaria (cruzamento) | 6230-030 Alcaria FND